To ensure a continuing pipeline in pharmaceutical research, lead candidates must possess appropriate metabolic stability in the drug discovery process. In vitro ADMET (absorption, distribution, metabolism, elimination, and toxicity) screening provides us with useful information regarding the metabolic stability of compounds. However, before the synthesis stage, an efficient process is required in order to deal with the vast quantity of data from large compound libraries and high-throughput screening. Here we have derived a relationship between the chemical structure and its metabolic stability for a data set of in-house compounds by means of various in silico machine learning such as random forest, support vector machine (SVM), logistic regression, and recursive partitioning. For model building, 1952 proprietary compounds comprising two classes (stable/unstable) were used with 193 descriptors calculated by Molecular Operating Environment. The results using test compounds have demonstrated that all classifiers yielded satisfactory results (accuracy > 0.8, sensitivity > 0.9, specificity > 0.6, and precision > 0.8). Above all, classification by random forest as well as SVM yielded kappa values of approximately 0.7 in an independent validation set, slightly higher than other classification tools. These results suggest that nonlinear/ensemble-based classification methods might prove useful in the area of in silico ADME modeling.
Intelligent, agile manufacturing relies on automated programming of digitally controlled processes. Currently, processes such as Computer Numerically Controlled (CNC) machining are difficult to automate because of highly restrictive controllers and poor software environments. It is also difficult to utilize sensors and process models for adaptive control, or to integrate machining processes with other tasks within a factory floor setting. As part of a Laboratory Directed Research and Development (LDRD) program, a CNC machine control system architecture based on object-oriented design and graphical programming has been developed to address some of these problems and to demonstrate automated agile machining applications usingmore platform-independent software. less
Mdl Factory Download Mode Samsung Galaxy Gio
Cloud detection is a critically important first step required to derive many satellite data products. Traditional threshold based cloud mask algorithms require a complicated design process and fine tuning for each sensor, and have difficulty over snow/ice covered areas. With the advance of computational power and machine learning techniques, we have developed a new algorithm based on a neural network classifier driven by extensive radiative transfer modeling. Statistical validation results obtained by using collocated CALIOP and MODIS data show that its performance is consistent over different ecosystems and significantly better than the MODIS Cloud Mask (MOD35 C6) during the winter seasons over mid-latitude snow covered areas. Simulations using a reduced number of satellite channels also show satisfactory results, indicating its flexibility to be configured for different sensors.
We present METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts), a method able to provide a reliable PDF for photometric galaxy redshifts estimated through empirical techniques. METAPHOR is a modular workflow, mainly based on the MLPQNA neural network as internal engine to derive photometric galaxy redshifts, but giving the possibility to easily replace MLPQNA with any other method to predict photo-z's and their PDF. We present here the results about a validation test of the workflow on the galaxies from SDSS-DR9, showing also the universality of the method by replacing MLPQNA with KNN and Random Forest models. The validation test include also a comparison with the PDF's derived from a traditional SED template fitting method (Le Phare). 2ff7e9595c
Comments